Cloning, pharmacological characteristics and expression pattern of the rat $GABA_A$ receptor α_4 subunit

William Wisden, Anne Herb, Heike Wieland, Kari Keinänen*, Hartmut Lüddens and Peter H. Seeburg

Laboratory Molecular Neuroendocrinology, Center for Molecular Biology, Im Neuenheimer Feld 282, D-6900 Heidelberg, Germany

Received 4 July 1991

A cDNA of rat brain encoding the GABA_A receptor α_3 subunit has been cloned. Recombinant receptors composed of α_3 , β_2 and γ_3 subunits bind with high affinity the GABA agenist [³H]muscimol and the benzodiazepine 'alcohol antagonist' [³H]Ro 15-4513, but fail to bind benzodiazepine agonists. The α_4 subunit is expressed mainly in the thalamus, as assessed by in situ hybridization histochemistry, and may participate in a major population of thalamic GABA_A receptors. The α_4 mRNA is found at lower levels in cortex and caudate putamen, and is rare in cerebellum.

GABA_A; Benzodiazepine receptor; In situ hybridization; Thalamus; α Subunit heterogeneity

1. INTRODUCTION

GABA receptors mediate the fast synaptic inhibitory effects of the neurotransmitter GABA in brain. This receptor is a ligand-gated anion channel, and is the target of action for a variety of psychoactive compounds such as barbiturates, benzodiazepines, neurosteroids and ethanol [1,2]. The GABA_A receptor is assumed to be a pentameric structure composed of subunits belonging to subunit classes α , β , γ , δ and ρ [3,4]. So far, in the rodent fiva α subunit types have been identified by cDNA screening. These are α_1 [5], α_2 [6], α_3 [7], α_5 [5,7,8] and α_6 [9,10]. The subunit termed by us and others as α_5 [7,8] has also been termed as α_4 [5]. A cDNA encoding a bovine α_4 subunit has been isolated although not pharmacologically characterized [11], with the existence of a rat α_4 homologue remaining uncertain [11]. The α subunits are a major factor determining pharmacological diversity in GABA_A receptors, with different α subunits combining with a β/γ pair to exhibit a broad spectrum of pharmacology [3,8,9,12]. Since it is important to analyze the whole repertoire of GABAA receptor subunits in an accessible experimental model, we have cloned the rat α_4 subunit mRNA and studied the sites of its expression in the rodent brain. At the same time, we present the first pharmacological characterization of this subunit.

Correspondence address: P.H. Seeburg, Laboratory Molecular Neuroendocrinology, ZMBH, Im Neuenheimer Feld 282, D-6900 Heidelberg, Germany. Fax: (49) (6221) 565894.

2. MATERIALS AND METHODS

2.1. Isolation of cDNA clones

A rat brain cDNA library constructed in λ -zap (Stratagene) was screened using a ³²P-labelled DNA fragment of the bovine α_4 cDNA [11]. A cloned 3.6 kb cDNA was identified and subcloned by in vivo excision into Bluescript plasmid. From this cDNA, a 0.6 kb *KpnI* fragment, a 0.6 kb *EcoRI* fragment and a 2.2 kb *EcoRI*/XbaI fragment were subcloned into M13 vectors [13] and sequenced [14]. The 2.2 kb *EcoRI*/XbaI fragment was sequenced with the aid of two interprimers, 5-TTCTCAAGTTTGCTTCTGG-3' ($r\alpha_{4-1}$), and 5'-TGTGTACCACATATCCCT-3' ($r\alpha_{4-2}$). A 2.9 kb *XbaI* fragment containing the entire coding sequence as well as 0.2 kb of 5'-untranslated and 0.8 kb of 3'-untranslated regions was used to construct a eukaryotic expression vector [8] for the rat α_4 subunit.

2.2. Pharmacology of recombinant GABA_A-benzodiazepine receptors Expression vectors for α_4 , β_2 and γ_2 cDNAs were transfected in triple combinations into human embryonic kidney (293) cells (ATCC # CRL 1573) as described previously [12]. Binding studies were carried out identically to previous protocols [8,9,12].

2.3. In situ hybridization histochemistry

3. RESULTS AND DISCUSSION

Screening of a rat forebrain cDNA library with a bovine α_4 cDNA probe at high stringency resulted in the

^{*}Present address: Biotechnical Laboratory, VTT, Espoo, Finland

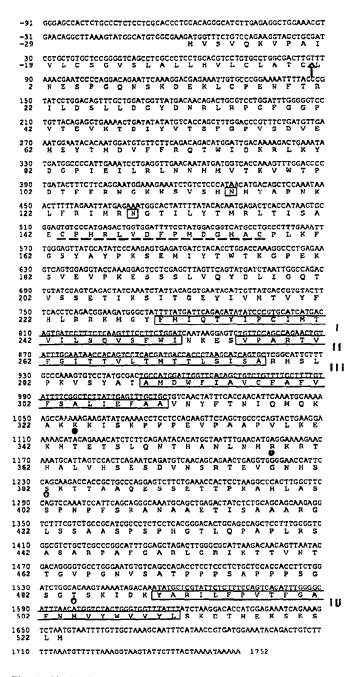


Fig. 1. Nucleotide and deduced amino acid sequence of the rat $GABA_A$ receptor α_4 subunit. The arrow marks potential cleavage site of signal peptide; N, potential N-glycosylation sites; filled circles, potential protein kinase C phosphorylation sites; open circles, potential cAMP dependent protein kinase phosphorylation site; transmembrane domains are boxed. The dotted line indicates the 15 residue disulfide-bonded loop region.

isolation of a cDNA with an open reading frame of 1656 nucleotides encoding a protein of 552 amino acid residues, including a predicted signal sequence of 19 amino acids (Fig. 1). The deduced amino acid sequence revealed an 88% sequence identity with the bovine α_4 subunit

[5]. Like its bovine counterpart, the rat α_4 polypeptide is predicted to contain a large cytoplasmic portion, making α_4 the largest GABA_A receptor subunit to date (MW of unglycosylated mature polypeptide, 65 kDa). The putative cytoplasmic sequence contains two potential sites for cAMP dependent phosphorylation and one for protein kinase C phosphorylation (Fig. 1).

The pharmacology of the α_4 subunit was examined by co-expression with β_2 and γ_2 subunits in cultured mammalian 293 cells (Table I). The $\alpha_4\beta_2\gamma_2$ receptors exhibited high-affinity binding sites for [³H]muscimol and high affinity sites for the benzodiazepine [³H]Ro15-4513. However, the latter compount was only poorly displaced by the benzodiazepine agonist diazepam (10 μ M). This binding profile is very similar to that observed for $\alpha_6\beta_2\gamma_2$ receptors and very different from $\alpha_1\beta_2\gamma_2$ receptors, suggesting that the α_4 and α_6 subunits may share functional properties.

Regarding the sites of α_4 subunit gene expression, the α₄ mRNA is very abundant in most thalamic nuclei examined (for example, ventral posterior nucleus, medial geniculate nucleus) but is almost entirely absent from hypothalamus (Fig. 2). In thalamus, and also in hippocampus, the distribution of α_1 and α_4 mRNAs are well matched. However, their respective distributions in other brain regions suggest that the enclosed subunits occur in distinct receptor complexes. The α_1 and α_d mRNAs have reciprocal distributions in the basal ganglia. The α_4 mRNA is more abundant than α_1 in the caudate nucleus. In contrast, α_1 mRNA predominates in globus pallidus. In addition, α_1 mRNA is very abundant in medial septum, an area where α_4 mRNA is absent. The α_4 transcript is absent or very rare in cerebellum and colliculi, both regions containing high amounts of α_1 mRNA.

These data suggest that the α_4 subunit participates in the formation of a previously uncharacterized native GABA_A receptor which would fail to bind BZ agonists. Such a receptor subtype would be found mainly in forebrain/thalamic structures. Additionally, since the α_4 and α_6 polypeptides exhibit very similar functional properties, they can be grouped together in a subfamily of the α subunits.

Acknowledgements: We thank Ulla Keller for the cryostat sections, and Jutta Rami for efficient secretarial skills. H.A.W. was supported by a Boehringer Ingelheim Fonds doctoral fellowship. W.W. holds an EMBO long-term fellowship. This work was supported by grants of the Bundesministerium für Forschung und Technologie, BCT 364, the Deutsche Forschungsgemeinschaft, SFB 317/B9 and the Fonds der Chemischen Industrie to P.H.S.

REFERENCES

- [1] Olsen, R.W. and Tobin, A.J. (1990) FASEB J. 4, 1469-1480.
- [2] Wafford, K.A., Burnett, D.M., Dunwiddie, T.V. and Harris, R.A. (1990) Science 249, 291-293.
- [3] Lüddens, H. and Wisden, W. (1991) Trends Pharmacol. Sci. 12, 49-51.

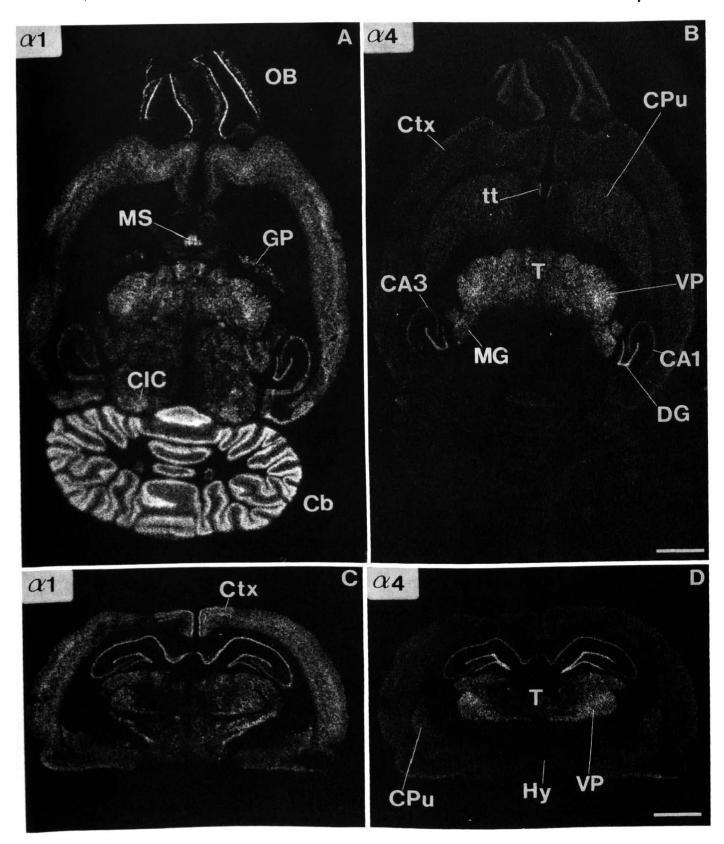


Fig. 2. Comparison of the distribution of α_1 and α_4 subunit mRNAs of the GABA_A receptor by in situ hybridization. A. α_1 , horizontal section; B. α_4 , horizontal section; Cb, cerebellum; C1C, central nucleus of inferior colliculus; CPu, caudate putamen; C. α_1 , coronal section; Ctx, cortex; DG, dentate gyrus; GP, globus pallidus; Hy, hypothalamus; MG, medial geniculate; MS, medial septum; T, thalamus; tt, tenia tecta, VP, ventral posterior thalamic nucleus; Scale bar, (B, D) 2.4 mm.

 $Table \ I$ Comparison of binding properties of recombinant $\alpha_2\beta_2\gamma_2$ GABA_A receptors

	[³H]Muscimol K _d (nM)	[³H]R015-4513 <i>K</i> _d (nM)	Diazepam K _i (nM)	Flunitrazepam K _i (nM)	Cl 218872 <i>K</i> _i (nM)	Flumazenil K _i (nM)
$\alpha_4\beta_2\gamma_2$	6.8 ± 1.9	4.97 ± 0.93	> 10000	> 10000	> 10000	107 ± 26
$\alpha_0 \beta_1 \gamma_1$	5 ± 0.5	5.4 ± 0.4	> 10000	> 10000	> 10000	90 ± 20
$\alpha_1\beta_2\gamma_2$	7 ± 2	15 ± 4	16 ± 1	2 ± 0.3	130 ± 40	0.5 ± 0.2

 K_d and K_i values were calculated from IC₅₀ values [16]. Standard errors of means (SEM) derive from three independent experiments with values at different ligand concentrations determined in duplicate.

- [4] Cutting, G.R., Lu, L., O'Hara, B.F., Kasch, L.M., Montrose-Rafizadeh, C., Donovan, D.M., Shimada, S., Antonarakis, S.E., Gruggino, W.B., Uhl, G.R. and Kazazian, H.H. (1991) Proc. Natl. Acad. Sci. USA 88, 2673-2677.
- [5] Khrestchatisky, M., MacLennan, A.J., Chiang, M.-Y., Xu, W., Jackson, M.B., Brecha, N., Sternini, C., Olsen, R.W. and Tobin, A.J. (1989) Neuron 3, 745-753.
- [6] Khrestchatisky, M., MacLennan, A.J., Tillakaratne, N.J.K., Chiang, M.-Y. and Tobin, A.J. (1991) J. Neurochem. 56, 1717-1722.
- [7] Malherbe, P., Sigel, E., Baur, R., Persohn, E., Richards, J.G. and Möhler, H. (1990) FEBS Lett. 260, 261-265.
- [8] Pritchett, D.B. and Seeburg, P.H. (1990) J. Neurochem. 54, 1802– 1804.
- [9] Lüddens, H., Pritchett, D.B., Köhler, M., Killisch, I.,

- Keinänen, K., Monyer, H., Sprengel, R. and Seeburg, P.H. (1990) Nature 346, 648-651.
- [10] Kato, K. (1990) J. Mol. Biol. 214, 619-624.
- [11] Ymer, S., Draguhn, A., Köhler, M., Schofield, P.R. and Seeburg, P.H. (1989) FEBS Lett. 258, 119-122.
- [12] Pritchett, D.B., Lüddens, H. and Seeburg, P.H. (1989) Science 245, 1389-1392.
- [13] Vieira, J. and Messing, J. (1987) Methods Enzymol. 153, 3-11.
- [14] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [15] Monyer, H., Seeburg, P.H. and Wisden, W. (1991) Neuron 6, 799-810.
- [16] Cheng, Y.C. and Prusoff, W.H. (1973) Biochem. Pharmacol. 22, 3099-3108.